PUBLICATION STORE SUBSCRIBE

Desalination: the answer to our water crisis?

By Andreas Wilson-Späth

Supplying South Africa’s growing population with clean, safe drinking water is a major challenge. Not only is the country’s water infrastructure in need of refurbishment in some places and entirely absent in many others, but access to sufficiently large quantities of potable water is increasingly becoming a problem.

This is not only a South African problem, of course. With population and industrial growth, poor watershed management, the widespread pollution and deterioration of rivers and other freshwater ecosystems, and with the impacts of climate change becoming more apparent every year, the world is facing a water crisis of potentially devastating proportions. By 2025, the UN estimates, some two-thirds of the planet’s population could be experiencing water stress conditions, especially those living in the dryer parts of the developing world.

You might have wondered why we haven’t used desalination of seawater to help us resolve our water supply problems. After all, much of South Africa is literally surrounded by oceans of the stuff. In addition, there is plenty of brackish groundwater in inland areas that could be converted into fresh water useable in agriculture, industry and for domestic use.

The basic technology is ancient. Humans have distilled salty water into potable water for centuries. So why not now?

Large-scale desalination plants are, in fact, increasingly being used worldwide. Thousands of them are in operation – the greatest number in the Middle East, from Saudi Arabia, the United Arab Emirates and Kuwait to Oman and Qatar. Most of Israel’s water already comes from such installations. The USA is home to about 300 of them and California, a state in the grip of the worst drought in history, is investing billions in the technology.

Several South African municipalities are considering desalination as part of their future water supply plans and government has suggested that in 15 years’ time as much as 10% of the country’s total urban water supply might be provided in this way.

The largest local desalination plant was opened in Mossel Bay in 2011 and mostly services PetroSA’s synthetic fuel operation there.

So what’s the problem? Although the technology has been improving steadily, there are several hitches. Most importantly it takes a lot of energy to convert salty water into fresh water.

In conventional high-pressure reverse osmosis systems, a large amount of electricity is needed to push saline water through a series of progressively finer membranes to remove salt and other chemicals. Using a more traditional distillation process, lots of electricity is used to heat water to its boiling point.

This massive energy requirement means that desalination plants tend to have large carbon footprints and contribute significantly to climate change – and thus to even worse water problems. Until now, large-scale desalination has only been a viable option for rich countries or those with plenty of fossil fuel to burn.

A secondary environmental problem results from the fact that for every litre of fresh water produced, about two litres of raw salty water needs to be processed, leaving behind significant quantities of toxic brine which can contain a variety of pollutants and represents a considerable threat to coastal ecosystem if it’s carelessly discarded into the ocean.

In a number of countries, including the Unites Arab Emirates, the USA and Australia, progress is being made in using renewable energy sources, principally the power of sunlight, to drive the desalination process. While this might be a low carbon alternative to conventional methods, the technology is still at an early stage of development and can’t be relied upon to solve our water problems at this point in time.

For now, the answer must lie in conserving existing freshwater sources. We can go a long way in countering the growing crisis by putting effort into water conservation strategies, using our precious freshwater more efficiently, with less waste, reusing water wherever possible, capturing stormwater that would otherwise just run into the sea and recycling used water whenever that is an option.

Ultimately, what’s required is a change in attitude from all of us. We need to change the way we look at water. We need to stop taking it for granted and treat it as a precious resource that needs to be treasured instead of wasted.

I’m part of a new non profit organisation called The Watershed Project. Our aim is to raise public awareness about water in all its aspects. Visit our website for more information, follow us on Twitter (@WatershedSA) and in March, join us for a festival of exciting water related activities from fun walks to outdoor film screenings (only in Cape Town for this year, but expanding to other parts of the country from 2016).

Source: News 24


 

Water Resource Seminar

Book your seat here.

Join the discussion here.


Follow Alive2Green on Social Media

TwitterFacebookLinkedInGoogle +

Conserving the Water Factories of the Western Cape

By Dr Ernst Barnard

The Western Cape is critical to any conservation effort in South Africa. It is not only one of the most ecologically complex and biodiverse areas in the world (due to the fact that it is home to more than 70% of one of the world’s six Floristic Kingdoms), but it is one of the primary water catchment areas for South Africa.

CapeNature, a public entity of the Western Cape Government and mandated with the conservation of biodiversity in the region, manages most of the mountain catchments and reserves that supply ecosystem services to its citizens, and the work that happens here has a direct bearing on the quality of life of millions of people in the province.

Figure 2: Where grasslands or shrublands such as fynbos are invaded by alien trees, the overall water use by the vegetation increases.
Figure 2: Where grasslands or shrublands such as fynbos are invaded by alien trees, the overall water use by the vegetation increases.

Healthy and functioning ecological infrastructure, that is, our rivers, streams, wetlands and seeps, in water catchment areas, and acting like “water-holding” and “water-producing” devices, provides clean, safe water to rivers, dams and ultimately to the end consumer. This paper demonstrates how the integrated management of three ecological processes, namely alien and invasive species, fire and freshwater, can be applied very successfully to conserve and, in many cases, restore these “water factories”.

The Western Cape holds 57% of the strategic water resources in the country, and 90% of the water catchment areas in the Western Cape are managed by CapeNature. These are typically the mountain catchments contained in a number of CapeNature nature reserves across the Western Cape, such as the Cederberg, the Boland and the Outeniqua Mountains.

Before delving into the actual management and restoration of these “water factories”, it’s important to highlight a number of threats to this important natural resource and ecological infrastructure, as well as some case studies of how CapeNature aims to protect and restore these natural water factories in the Western Cape. It goes without saying that without water, the Western Cape and its people, and indeed the whole world, would be a much poorer place. To begin, start by looking at a typical mountain catchment in the Western Cape; primarily covered in our famous fynbos which as a rule, does not really contain any trees. Normal run-off and water yield from a typical fynbos mountain catchment is maximised by the fact that a natural and healthy run-off process is maintained.

Figure 3: The current estimate is that invasive aliens cover approximately 10 million hectares in South Africa, and use approximately 3.3 billion cubic metres of water in excess of that used by native vegetation every year.
Figure 3: The current estimate is that invasive aliens cover approximately 10 million hectares in South Africa, and use approximately 3.3 billion cubic metres of water in excess of that used by native vegetation every year.

When trees are added, the situation changes quite dramatically, starting with the fact that on average, a mature tree, say a pine tree, consumes approximately 40-50 litres of water per tree per day. In 1995, Dye, Olbrich and Everson established that the greatest impact on water yield from a healthy mountain catchment area occurs when seasonally dormant vegetation, such as fynbos, is replaced by evergreen plants, such as invasive pine trees.

Thus, where grasslands or shrublands (like fynbos) are invaded by alien trees, the overall water use by the vegetation increases, leaving less water for the streams, and consequently for the end- user. Furthermore, in 1987, Van Wyk showed that infestation by invasive trees can result in a 55% reduction in streamflow (from 600 to 270 mm) in fynbos catchments, after 23 years of infestation with pines. This technically means that the water yield or run-off process has been significantly affected.

Alien and invasive species

The first ecological process in our mountain catchment areas is alien and invasive species. The current estimate is that invasive aliens cover approximately 10 million hectares in South Africa, and use approximately 3.3 billion cubic metres of water in excess of that used by native vegetation every year (that is almost 7% of the runoff of the country). These estimates indicate that the reduction in water yield is already significant and definitely large enough to warrant intervention. The logical conclusion is that these water losses will increase as alien plants invade the remaining, uninvaded areas. It is therefore in the interests of healthy catchments and the people of a region that immediate and decisive action is taken to protect the sustainability of water yield from South African catchments.

Fire

The second important ecological process in our catchments is fire. Because fynbos in the Western Cape region is a fire-driven ecosystem, fire remains a very important and necessary process. Fynbos requires fire to survive and to rejuvenate itself and without fire, fynbos dies. Therefore, any given fynbos fire is not necessarily bad news; it can be very good news. However, every year unwanted and uncontrolled veld and forest fires devastate our landscapes, affecting natural ecosystem functions, endangering life and ruining property. With the Western Cape being one of the worst affected areas in South Africa, it is necessary to pay special attention to fire management within the mountain catchments of the Western Cape.

Figure 4: With the Western Cape being one of the worst affected areas in South Africa, it is necessary to pay special attention to fire manage- ment within the mountain catchments of the Western Cape area.
Figure 4: With the Western Cape being one of the worst affected areas in South Africa, it is necessary to pay special attention to fire manage- ment within the mountain catchments of the Western Cape area.

CapeNature has been mapping fires in the fynbos for many years and over the past 14 years the region experienced 1 139 veldfires, on an estimated 1.2 million hectares of fynbos. Even though fynbos requires fire, the optimum frequency of fire needed is in intervals of approximately 10–15 years. Add to that the increased fuel load from invasive alien plants, and the result is that fires in the region are burning too hot and too frequently and are impacting on the production process of fynbos, hampering the ecology of the catchment areas for optimum water production. In an attempt to quantify ecological damage to fynbos by too-frequent fires, an ecological study was done by CapeNature’s scientists in the Boland area in 2009, following the Western Cape fires of December 2005. Using specific kinds of Protea species (re-seeders) as indicators, the aim was to establish the impact of the fire on biodiversity.

Using the established rule and threshold that 50% of the individual Protea plants in a population should have flowered at least three times before the next fire, the key finding in 2009 was that there did indeed seem to be a negative impact on biodiversity in the affected area of six-year-old veld. This was due to the fact that the Protea indicator species had insufficient time to flower and produce seeds. At least 80% of the Protea indicator species had not produced flowers at the time of the 2009 fire, which means that the plants could not form seed to produce the next generation. Some of these species need at least 12-19 years before 50% of the plants have flowered at least once.

In the big January 2013 fires (merely four years later), a large portion of the same study area was burnt, which meant that plants of the indicator species which had remained, definitely did not have enough time to flower, and that biodiversity was more than likely negatively affected. From a conservation point of view, this is extremely worrying.

Freshwater ecosystems

The third ecological process is freshwater ecosystems. Due to the semi-arid nature of the South African and Western Cape Province landscape, conservation of freshwater ecosystems has become more and more important. The Western Cape is fortunate to still have some near-pristine mountain streams and upper foothill rivers, many of them found in CapeNature Nature Reserves and mountain catchments. The wetlands found in these mountain catchments are generally also found to be in good condition.

Figure 5: Due to the semi-arid nature of the South African and Western Cape Province landscape, conservation of freshwater ecosystems has become increasingly important.
Figure 5: Due to the semi-arid nature of the South African and Western Cape Province landscape, conservation of freshwater ecosystems has become increasingly important.

However, too many of the lower lying ecosystems such as rivers and wetlands in the rural and mostly agricultural landscape have been altered to a completely degraded state, often resulting in impoverished water quantity and quality. When freshwater ecosystems reach this degraded state, they also lose their ability to act as so-called “ecosystem services”, that is to, for example, supply fresh water during dry periods or to mitigate against serious ecological damage during severe flooding events.

Looking at the state of our Western Cape freshwater ecosystems, and according to the CapeNature State of Biodiversity Report of 2012, 45% of the province’s rivers and 71% of our wetlands in the Western Cape are threatened (either Critically Endangered, Endangered or Vulnerable), compared to 51% and 65%, respectively, at the national level. Lowland river ecosystem types and floodplain wetlands are the most threatened river and wetland ecosystem types. This is particularly worrying, as they are also the least protected of the river and wetland ecosystem types.

In order to assist planning for freshwater conservation, Freshwater Ecosystem Priority Areas were identified, and it was established that all the indigenous fish could for example be protected if we were able to protect a mere 17% of rivers in the Western Cape.

CapeNature takes the management and restoration of our mountain catchment areas and freshwater ecosystems very seriously and the following case studies of the ways we go about it will hopefully illustrate that we aim to make a difference.

Case Study 1: Duivenhoks

Since 2009/10 the Duivenhoks (near Heidelberg) and Goukou (near Riversdal) Wetland Rehabilitation Projects in the Hessequa Municipality of the Western Cape have been rated as the best among various wetland rehabilitation projects across the country. These two wetland ecosystems, both Palmiet-dominated, peatland systems, are rehabilitated as they are considered of high value for both biodiversity and water supply to nearby towns and farms. These two systems have been impacted on mainly by ill-advised agricultural practices in the past. Many farmers have, for example, dug irrigation trenches in the wetlands or drained them for cultivation. In many cases, crops were cultivated too close to wetlands or even within their boundaries.

Image 1: The Duivenhoks Wetland Rehabilitation Project
Image 1: The Duivenhoks Wetland Rehabilitation Project

The project started in the Goukou wetland system where a gabion structure was constructed in the middle of a very sensitive and inaccessible wetland, and which has been restored to the point where it has withstood some serious flood events (500mm in two days) proving that the design and workmanship were up to task. With the completion of this structure, a new structure was started on the Duivenhoks system, too. This is a much bigger structure also made of gabions and with difficult access. Both these projects are deemed successes and the wetlands are functioning and relatively healthy again.

Case study 2: Berg River Improvement Plan

The Berg River is a vital source of water in the Western Cape, not only for farmers, but also for industrial development, human consumption and recreation. In January 2013, the Western Cape Government approved a plan to spend R16 million, over the following three years, on improving the quality of water in the Berg River. The project is a joint effort between the Western Cape Government, the Department of Water Affairs, CapeNature and the various municipalities in the area.

Image 2: Berg River Improvement Plan
Image 2: Berg River Improvement Plan

This is a multi-faceted project, which is aimed at:

  • Monitoring water quality: Water is being monitored for the presence of heavy metals, pesticides, pesticide residues, nutrients, as well as E. coli, at 20 sites identified as critical in the river and estuary areas.
  • Upgrading wastewater treatment works: Both the Franschhoek and Wemmershoek wastewater works are being upgraded, in partnership with the relevant municipalities.
  • Upgrading the informal settlements alongside the Berg River: looking at how a community can maintain a healthy state, regulate its own waste and heal its own water.
  • Introducing sustainable practices and the efficient use of water in agriculture: We are working with farmers and golf estates in the riparian zone, on the best and most efficient use of water.
  • Rehabilitation and bioremediation: CapeNature and Working for Water have undertaken alien vegetation clearing in Hermon, Drakenstein, and near Voëlvlei Dam, with corresponding planting and bioremediation in these areas.

Also, economies of water: Looking at how much water is used by the region’s economy, where and how it is used, analysing consumption in terms of economic productivity, and designing and implementing interventions to alleviate constraints. This is certainly not a short-term plan. The Berg River Improvement Plan is a joint effort from a number of different agencies who are working together towards a common goal—that the Berg River will continue to be a valuable and protected source of water into the future.

Case study 3: Job creation through conservation

Unemployment is a key issue in South Africa; and CapeNature and other conservation authorities realised that conservation provides opportunities for employment, particularly in poorer communities.

Programmes like the Expanded Public Works Programme, including Working for Water and Working for Wetlands, have provided jobs that play an important part in conserving our natural resources. The people employed in these programmes have been of enormous value in clearing alien vegetation, building firebreaks and infrastructure, as well as assisting during disaster situations, for example oil spills and floods.

Figure 8: CapeNature’s contribution to job creation
Figure 8: CapeNature’s contribution to job creation

Figure 8 depicts results obtained by CapeNature over the last few financial years including the number of jobs and full-time equivalents created.

CapeNature managed to make great strides in the past five years with the help of the Working for Water programme in terms of the management of invasive alien plants within protected areas. This is perfectly aligned with the Government’s attempt to create jobs and alleviate poverty, and has made a difference in many people’s lives.

Figure 9 illustrates how the different “Working for…” projects are deployed across the Western Cape region. The backdrop to these projects is the so-called “poverty layer” based on the Western Cape demographic statistics and, more

specifically, the unemployment per ward. With this approach, it is at least possible to make sure that some of the effort and money allocated towards job creation and poverty alleviation is spent in areas where it is most needed.

Looking at the amounts spent in the landscape, these efforts are making a significant difference in people’s lives.

Case study 4: Integrated fire management

Integrated fire management is the development and implementation of mitigation measures, standards and prescriptions based on comprehensive risk assessment, and aimed at reducing the negative impacts of veld and forest fires on social, economic and environmental assets. It is an adaptive process of continual improvement, involving record-keeping, monitoring, measurement

Figure 9: Response to Western Cape unemployment and poverty – deployment of resources
Figure 9: Response
to Western Cape unemployment and poverty – deployment of resources

and modification. Integrated fire management also implies co- operation and coordination between all role players in the fire prone environment.

Partnerships between Provincial Disaster Management Fire Brigade Services, District Municipalities, fire contractors, Volunteer Fire Services and a number of Fire Protection Agencies, create a distinct effort for cooperation, rapid response and suppression. Integrated awareness initiatives and monitoring have proven to be successful during the last fire season (2013/14) with less hectares burnt; in fact, only one tenth of the area burnt during the previous season, even though there were the same number of fires.

The Winelands District Municipality is leading the way with a joint Integrated Fire Management Plan along with CapeNature to ensure better veldfire management within the Boland Area. This is an area which has been identified as a high risk area for ecological damage due to too frequent fires.

Case study 5: The Rondegat Rehabilitation Project

The Rondegat rehabilitation project demonstrates yet another way and angle of ecological restoration of ecosystems that have been affected by alien and invasive species. A 4.5km stretch of the Rondegat river in the Cederberg Nature Reserve managed by CapeNature has been cleaned of invasive small-mouth bass in order that this part of the river can be re-colonised by indigenous fish such as rock catlets, redfin minnows and Clanwilliam yellowfish. This project is deemed a big success and the latest monitoring results by independent scientific consultants have shown a return of this part of the river to a near-pristine stage, and colonised with all three species of indigenous fish expected to come back.

A healthy ecological system is healthy and free from “distress syndrome” if it is stable and sustainable – that is, if it is active and maintains its organisation and autonomy over time and is resilient to stress.

These case studies confirm CapeNature and the Western Cape Government’s dedication to the integrated management and restoration, where required, of the province’s mountain catchments and other ecological infrastructure in order that the people of the Western Cape can benefit from:
• more, cleaner and safer water to the end user,

• improved and sustainable farming practices,

• reduced erosion of ecosystems and reduced risk of disasters,

• better adaptation to climate change, and • the conservation and sustainability of the biodiversity of the region.

Source: The Sustainable Water Resource Handbook Volume 5


Water Resource Seminar

Book your seat here.

Join the discussion here.


 Follow Alive2Green on Social Media

TwitterFacebookLinkedInGoogle +

 

South Africa’s great thirst has begun

Eskom’s electricity woes have hastened the failure of water infrastructure around the country.

For many South Africans, the water crisis is already here. For others, research and projections show, it is only a matter of time – and perhaps not a great deal of time.

Thanks to load-shedding, and a shortage of water when electricity is restricted, the thirsty future could arrive in major urban centres as soon as this summer.

Early last year, four people died in violent protests over a lack of water in the Mothotlung township outside Brits in North West. In the glare of national publicity, water was quickly restored.

But on Monday, almost exactly a year later, taps in the township again ran dry. When the water flowed again on Tuesday, it was brown.

“I am scared to drink water from the tap. I only use it for bathing and washing clothes. I do buy water from the tuck shop when I have money,” said 72-year-old widow Johana Ngwato.

“My daughter is six years old and, whenever she takes the water, she experiences diarrhoea,” said Ngwato’s niece, Baile Masango.

Grahamstown march

In 2013, a two-week water outage in Grahamstown saw academics, in their formal caps and gowns, march in lockstep on the city council offices, with township residents following, brandishing placards.

Rhodes University, the lifeblood of the town, issued a stark warning that garnered national attention: without water it would have to close its doors.

On Monday night, the water supply went off again without warning in a section of the township overlooking Grahamstown, leaving Tembinkosi Mhlakaza to wonder at what point he should go to fetch water for his grandmother, and how far he would have to go to get it.

“She’s nearly 80,” Mhlakaza said. “Our water went out last night, and it may come on this afternoon. But if it doesn’t, I have to make a plan for her.”

Supply failures

In 2014, the residents of Thlolong outside Kestell in the Free State were promised that a new dam would solve their water woes. On Wednesday, a resident, who did not want to be named for fear of reprisal, said neither the dam nor emergency water supplies were anywhere to be seen.

“We are thirsty. It has been eight years now that we live like this. The tankers that the municipality use to bring us water are not here this week; we didn’t see them last week. We don’t know what we must do now.”

In Johannesburg, some suburbs were warned this week to expect weekend water outages because of scheduled maintenance at a pumping station – the same station that left some of the same suburbs, and some hospitals, without water for days last year. The maintenance plan was later postponed.

These are no longer isolated cases. According to government officials, about a third of all towns are in some form of serious water distress. The department of water considers one in 10 municipal water systems to be totally dysfunctional, and, of those that are working, a quarter experiences regular service disruptions of more than two days at a time.

In provinces such as Mpumalanga, there are more households that have regular water interruptions than those with a steady supply.

Municipal incompetence

In Mothotlung and Grahamstown, the water supply issues can be linked directly to municipal incompetence, a lack of engineering skills and the failure of management. Neither area has a shortage of untreated water, but they are going thirsty because of a lack of maintenance and proper financial administration and planning.

These problems show no signs of abating, as bitter experience shows.

“If you give me the money and people, I can fix it up for good,” said a Grahamstown city engineer, who is not authorised to speak to the media. “Without money and people, I’ll keep it running as long as I can. Just don’t ask me to fix it quickly when it really all breaks down; then you can keep your money.”

In Johannesburg, water shortages in 2014 were caused by electricity failure to a key pumping station, which in turn was linked to cable theft.

With Eskom warning that there will be regular load-shedding for the rest of the summer, and unable to deliver consistent power for several more years, water engineers are trying to work out how to manage shortages.

Meagre reserve margins

In many areas, water systems have either little or very meagre reserve margins. Electricity outages at pumps that move raw water could leave treatment stations without water. And, without treated water to move, pumps responsible for distribution would be idle when they do get electricity.

These two factors – local incompetence and a national electricity shortage – will have the biggest impact on what, if anything, comes out of the taps for the next several years.

But, within the next decade, two other fundamental issues are likely to make themselves felt – problems that no amount of local governing excellence or electricity will solve.

For one, there is simply not enough water left to go around.

“The situation currently in South Africa is that we have 98% of the water in the country being considered fully allocated. This means that my child and your child that is being born tomorrow has 2% of water for use going into the future,” then water minister Edna Molewa said of water usage rights in 2013.

Eskom first

Eskom has a 99.5% assurance of receiving water, meaning the power utility gets water before any other sector of the economy.

The 2030 Water Resources Group, of which the department is a member, has calculated that, by 2030, the demand for water will exceed supply by 17%. In most of South Africa’s catchments, demand is already outstripping supply, and it is only by piping water from places such as Lesotho that there is enough for now.

Climate change projections are that, by mid-century, reduced rainfall could lower the amount of available water by 10%. Rainfall is expected to come in shorter, but more violent, spells. The projections say this will make collection in dams and underground difficult.

Exactly how much water is available is a complex calculation, with many variables and estimates to consider, and it is seasonal, to boot.

In lay terms, the easy water is already being harvested. Major South African rivers have been dammed to maximum capacity – there are nearly 4400 registered dams – and some would argue beyond their capacity; river systems require what is sometimes referred to as an “ecological reserve”, a minimum amount of water to continue functioning and be useful.

Barriers to supply

Water systems that could handle new dams are both far from population centres and limited in their ability to supply water.

“Many parts of the country have either reached or are fast approaching the point at which all of the financially viable freshwater resources are fully utilised and where building new dams will not address the challenges,” the department of water affairs said in its 2013 strategy report.

That leaves South Africa more dependent than ever on water pumped from Lesotho, where a new phase of the Highlands water scheme will come on line in 2020.

But all the run-off from Lesotho must inevitably flow through South Africa to the ocean, making even that water-rich country a finite resource for South Africans.

An increase in global temperatures is expected to increase evaporation from dams, which potentially makes building more an exercise in running on the spot rather than getting ahead.

More groundwater can be exploited, but only by so much. Desalination is possible, but it requires large amounts of electricity and is very expensive.

Little to go around

That all leaves little untreated water to go around, even without the expected increases in municipal use, because of a growing population, agricultural use, which is increasing the amount of land under irrigation and is a mainstay of plans to improve both employment and food security, and industrial use.

“Increases in water supply cannot match the expected increase in demand without additional and far-reaching interventions,” Steve Hedden and Jakkie Cilliers, of the Institute for Security Studies, wrote in a September 2014 paper. “The water crisis cannot be solved through engineering alone.”

The second structural problem is an unfolding ecological ­disaster, which is making available water more difficult to treat and, eventually and without intervention, will make direct use of untreated water impossible.

“Water ecosystems are not in a healthy state,” according to the department of water affairs’ National Water Resource Strategy 2013. “Of the 233 river ecosystem types, 60% are threatened, with 25% of these critically endangered … Of 792 wetland ecosystems, 65% have been identified as threatened, and 48% as critically endangered.”

Human waste

The sources of pollution in fresh water include industrial run-off and acid mine drainage, but human waste is a larger and more immediately dangerous component, ironically because of the large amount of water South Africans use.

“Most waste water treatment facilities are under stress because so much more waste water needs to be treated,” said Gunnar Sigge, head of Stellenbosch University’s department of food science and one of those involved in a seminal – and alarming – 2012 study for the Water Research Commission.

“Some of the biggest problems [in the water system] are caused by treatment works that aren’t functioning.”

Jo Barnes, a specialist in community health risks at Stellenbosch, said a chronic lack of investment in treatment plants meant conditions that should not exist, such as diarrhoea, were killing people.

“The whole environment where people live is contaminated. This is a massive, massive problem, but one that people will not talk about. There are just a few angry people trying to raise awareness.”

The 2012 study, carried out in all the provinces and over a three-to-four year period, found that the amount of faecal matter in many water systems made it unsafe for irrigation, because eating raw produce watered with it could cause illness.

Informal settlements

Informal settlements both contribute to the pollution and are affected by it, and some draw directly on groundwater. According to the department of human settlements, the number of informal settlements rose from 300 in 1994 to about 2 700 today, housing 1.3-million families.

In Mothotlung, Serube Lukhelo is afraid to give her one-year-old baby water that could cause diarrhoea, so she spends what money she has on bottled water.

In Grahamstown’s Joza location, Nomfundo Bentele is considering putting up a sign at her hair salon to let customers know whether she has water or not.

In Johannesburg residents and hospitals wait to hear when water from their taps will stop running.

Everywhere else the clock is ticking.

 

Source: Mail & Guardian


Water Resource Seminar

 

Book your seat here.


Follow Alive2Green on Social Media
Twitter Facebook LinkedIn Google +

Rwanda: Conserving, Recycling Water Is Best We Can Do for This Precious Resource

Where some nations wrestle and struggle with ecology versus energy demands in form of coal and oil, Africa has to consider something more fundamental: the need for water to survive! It has been said that water is second only to air in importance for life.

We can survive many days or even weeks without food, but we can only survive a few days without water. According to water.org, about 750 million people, that is about one in nine, lack access to clean water.

More than twice that many, about 2.5 billion people, do not have access to a toilet. This grim picture demonstrates the urgent need of having access to clean water. It has been predicted by water.org that population levels will rise by around 2.7 billion, close to a 40% increase, by 2050.

If this happens, extreme pressure will be placed on our precious and already hard-pressed freshwater resources in our surroundings. A report issued in November 2009 by the UN suggests that by 2030, in some developing countries water demand will exceed supply by 50%.

According to the UN, already more than two and a half billion people in the world live in the most abysmal standards of hygiene and sanitation. Helping them would do more than reduce the death toll; it would serve to protect the environment, alleviate poverty and promote development. That is because water underpins so much of the work we do in these areas.

In fact, the need for innovations in water conservation has never been greater. According to the World Water Council, although the world’s population tripled in the 20th century, the use of renewable water resources grew six-times. The increased industrialisation and the added demand for water will have somber consequences on water supply in future.

There should be increased awareness that freshwater resources need protection and sensitize companies, individuals and communities to seek innovative solutions in water conservation.

Rwanda uses less than 2% of its available fresh water resources; there is scope for increased use of the resource in the economic and social transformation. In planned developments in energy, agriculture, infrastructure, industry and domestic supply, indicate that water demand will increase in the next 5 – 10 years.

The high population growth is expected in the developing regions of the world where already clean water is often incredibly hard to come by. The problems associated with water supply are not just about quantity.

A growing number of contaminants such as heavy metals, distillates and micro pollutant are entering our water resources, supplies , making conservation more challenging. Figures on access to water and sanitation in many developing countries vary depending on the source of information . The fact that many rural water systems are not functioning properly makes it even more difficult to estimate effective access to improved water supply.

Water is very essential to survival. Unlike oil, there are no substitutes. But today, fresh water resources are stretched thin. Population growth will make the problem worse. The global economy grows concurrently with its thirst that needs to be quenched.

Indeed water is life, not only is the human body estimated to be 60 percent water, the resource is also essential for producing food, clothing, and computers, moving our waste stream, and keeping us and the environment healthy.

Most of the health and development challenges faced by the poorest of the world’s population-diseases like malaria or Tuberculosis , rising food prices, environmental degradation-the common denominator often turns out to be water.

International World water day is almost here with us, March 22nd and this year provides an important opportunity to consolidate and build on the previous World Water Days to highlight water’s role in the sustainable development agenda.

Just like the many nations on earth and Rwanda as always joins the rest of the world in marking the importance of this vital resource, there is utmost need to create awareness of its recycling and as its conservation.

The water resources in Rwanda face growing challenges arising from pressures of rapidly changing demographic patterns, the demands of intensified socio-economic development, degradation from unsustainable and inappropriate land use practices; and the uncertainties created by climate change, among others.

Millennium Development Goals has set a target of cutting by half the number of people without access to safe water by 2015. Water Resources Master Plan derived from the Rwanda National Policy for Water Resources Management that was approved by the Cabinet in February 2012 has one of its objectives to provide an equitable allocation framework for water resources recognizing water as a finite resource.

The challenge we face now is how to effectively conserve, manage, and distribute the water we have. National efforts encourage us to explore the local and global trends defining the world’s water crisis.

As it is often argued, whenever there is less land available, and less water to make that land productive, competition for that land can turn violent.

Strangely enough, as Claudia Ringler, a research fellow at the International Food Policy Research Institute in Washington observes, “On a per capita basis, water availability is not that bad in Africa. In Ethiopia and Somalia, the water is there, but it is not getting to where it needs to be.”

Source: All Africa


Water Resource Seminar

Book your seat here.


Follow Alive2Green on Social Media

TwitterFacebookLinkedInGoogle +

No Easy Answers When Disposing of Oil and Gas Wastewater

We all want easy answers. And often times the harder the question, the easier we want the answer to be.

Increased natural gas use, for example, can help decrease U.S. greenhouse gas emissions as it has a lower carbon content compared to coal or oil. Natural gas also can help transition our energy mix to more renewable energy sources. This is because properly designed, gas-fired generation can respond quickly to pick up the slack if the wind suddenly dies or clouds unexpectedly roll in. But, these benefits mean nothing if the communities where gas is produced suffer air and water pollution, or if methane – a powerful global warming pollutant that is the primary ingredient in natural gas – is allowed to leak into the atmosphere unchecked.

We all should be worried about global warming and the role that sloppy oil and gas production and distribution practices contribute to the problem. But communities where oil and gas development is taking place are also worried about how oil and gas drilling is impacting their water supplies. This is a key issue and one aspect of the groundwater contamination concerns, rightfully gaining attention in these communities, is how and where toxic wastewater is disposed of that is produced along with oil and gas. But here, too, the answers don’t come easy.

The basic regulatory framework

More than 25 percent of the country’s approximately 700,000 injection wells handle produced water from oil and gas operations. The quantities are huge – at least 2 billion gallons per day. And this fluid is not harmless. Produced water from oil and gas operations is usually much saltier than sea water (it will kill plants and can ruin soil) and is often laced with heavy metals and radionuclides that are naturally present in the formation being drilled.  In addition, this produced water can contain hundreds of toxic chemicals – anti-freeze to name just one example.  The current standard practice for addressing this potential environmental hazard is through injection of the water into geologic formations suited to permanent disposal.

The 1974 Safe Drinking Water Act gave the EPA oversight of underground wells injected with chemical-laden fluids for disposal and other purposes. In most cases, EPA delegates the authority to state agencies, but in some states, such as Pennsylvania, EPA regulates the wells itself.

EPA’s Underground Injection Control (UIC) program generally has received high marks. In fact, many environmental advocates believe it is important to expand the program to include hydraulic fracturing of oil and gas wells, which was largely excluded from UIC regulation by the “Halliburton loophole” passed by Congress in 2005.

Challenges with existing methods

For all its high marks, the UIC program also has its problems. For starters, it is uncertain whether all states are following EPA’s definition of “Underground Source of Drinking Water”– the water that is supposed to be protected.

Leaks sometimes occur from storage tanks at UIC wells.

Other challenges include: inadequate investigations in some jurisdictions of the surrounding disposal area to make sure no unplugged wells or natural faults allow wastewater to migrate into water supplies; not always assuring that pressures during injection are held low enough to avoid breaks in caprock that protect aquifers;  failing to make sure that injection is always limited to permitted intervals;  and responding to the  increasing number of small and medium size earthquakes that are linked to injections.

Underfunding of regulatory programs compounds the problem, making it harder to provide the public with assurance that their water quality is protected from oil and gas development.

Wastewater Recycling: Buyer Beware

Recycling oil and gas wastewater for reuse in hydraulic fracturing operations is on the rise. The challenge, however, is that recycling requires storage and transport, and almost always requires some sort of treatment. How new residual waste streams are dealt with that carry far more toxic and concentrated substances than the water treated is a major environmental concern as companies jump on the recycling trend. Growing interest in the Appalachian Basin to treat oil and gas wastewater and discharge it into surface streams has heightened attention on these matters. Right now, these discharges are subject to EPA’s National Pollutant Discharge Elimination System (NPDES), but as EPA recently noted in its Preliminary 2014 Effluent Guidelines Program Plan, “current regulations may not provide adequate controls for oil and gas extraction wastewaters.”

Recycling wastewater does reduce the need for freshwater and reduce the volumes that need to be disposed, but it can make disposal much more challenging – particularly when we don’t know enough about the treatment process and resulting waste products.

Diligent oversight needed

Permanent storage using underground injection wells remains by far the most common disposal method. At this point, it also appears to be the least risky, not to be confused with “unrisky”.

But there are things that can be done right now to help us begin to minimize these risks, such as updating requirements for the installation and maintenance of pits and tanks, assessing risks posed by new forms of transport and adopting appropriate risk controls, and doubling down on efforts to identify and remediate leaks and spills.

Bottom-line: none of this is simple. And questions about management of this produced water from drilling operations further demonstrates why we need to stay vigilant in better understanding the environmental impacts of oil and gas development. Having worked most of my career on these issues, it is clear to me that incremental but near-constant improvements are essential to minimize risks and protect communities.

Source: The Energy Collective

Upstream and downstream water use in agriculture – a fine balancing act

By: Lani Botha

Green Business Journal 9 (2013)

Eye-watering reflections on agriculture and H2O

Increasingly aggressive competition in the modern commercial agricultural marketplace vies with anecdotal evidence that traditional and small-scale co-operative farming should not be abolished. As water shortages add pressure, the upstream and downstream industry impacts on agriculture are also becoming a hot button begging for bridging collaboration among resource competitors.

Although less than a third of the planet’s freshwater is available to sustain life on earth – the remaining two-thirds being on ice at the poles, water cooler exchanges about H2O scarcity have not yet reached the level of popularity they deserve.

Industry, on the other hand, is acutely aware of how the uneven surface distribution of this constant affects not only the bottom line, but also the sustainability of mining, agriculture and manufacturing futures.

Eye-watering predictions

Sunny South Africa, meted out less than half earth’s 985 millimetres of rainfall annually, is water-stressed – increasingly so as you move west. Adding a tinge of rouge to this bleak picture, the warming planet will amplify floods and droughts, higher evaporation rates and soil degradation.

While South Africa carries an extensive albeit ageing system of water catchment, damming and man-made transfer tributaries, freshwater quality labours under swelling pollution, wetland and river catchment abolition, and deforestation – as mining, agriculture, manufacturing and energy companies scramble to meet the diverse demands of Africa’s growth trajectory amid urbanisation.

When I attended the Gauteng Water Summit in Johannesburg pre-COP17, the Department of Water and Environmental Affairs confirmed that 2015 would be the year that Gauteng water demand would outstrip supply, while in 2025 the buck would stop (drinking) in the rest of the country.

Although about 36% more South Africans can access potable water today as opposed to 1994, a hazardously similar percentage
of our water is today unaccounted for – that is, R11 billion or half the water in the Vaal dam wasted annually. In a country where we spend one-and-a-half times more on clothing than on education, with a corresponding premium on DStv subscription over retirement annuities, a shift in thinking to conservation wisdom means a shift in attitude rather than amplitude.

Same issues, different industry

Resource cost and supply reliability, the pace of technology advances and knowledge transfer, worker rights and compensation, waste management and regeneration, and fluctuating market demographics play devil’s advocate across industries heavily reliant on one another for stability.

The trick here is for each industry to invest now in the latest clean and resource-efficient technologies available to market – to ensure their operations do not affect each other adversely. After all, industries are competing for the same scarce resources, while time is agile and balance the golden mean.

Also dominating dialogue at the country’s first Industrial Resource Efficiency Conference earlier this year, cleaner production and improved resource use needs to be balanced with employment creation if we are to ensure South Africa’s sustainable global competitiveness.

Food for thought: yielding the axe

Although the US department of Agriculture’s latest World Agricultural Production report puts South African commercial agriculture productivity safely ahead of our sub-Saharan cousins, we are far behind the yields per hectare achieved further up the Continent and in the European Union. Aside from output per hectare, our productivity is also benchmarked against capital, labour, fertilizers, irrigation, fuel, access to markets and insurance.

Interdependence: agriculture and water

Agriculture including irrigation requires 60% of the country’s water resources, while mining/industrial and urban/domestic users each require only a tenth of our precious water reserves – the remaining fifth in environmental application, the Water Research Commission reports. To make common sense of agriculture’s mammoth share, consider that affluent households spend nearly half their water just on watering the garden.

Although downstream users may use substantially less water, the irreversible damage of Acid Mine Drainage (AMD), effluent discharge (especially from non-compliant Waste Water Treatment Works) and inefficient distribution systems highlight the murky fact that water services can’t be provided without clean water resources.

However, the management of our water resources (rivers, dams, wetlands and groundwater) and water services (access to potable water and sanitation) are dealt with separately in the Constitution and legislation – and perhaps therein lies the problem.

Tomorrow’s ‘hydrogarchs’

Rand Water alone provides 45% of the South African headcount and 60% of the economy with water it sells to local authorities, mines and factories, distributed over an 18 000km2 area that includes Gauteng, parts of Mpumalanga, the North West, Free State and Limpopo Provinces. Indirectly, this supplies 12 million homes, schools and businesses with clean water.

As chief water consumers, farming and agroprocessing communities are natural water custodians. Poorly operated and overextended wastewater treatment works hold material risk for farmers, as water becomes unfit for irrigation, recreational or livestock watering uses, which directly and severely impacts downstream users.

Conversely, commercial farming increases soil erosion through ploughing, overgrazing, logging and road building – creating murky water and raised salt and mineral content; while fertiliser use compounds nitrate and phosphate levels – resulting in algae blooms and eutrophication, and the downstream harm in pesticides.

Upstream, pollution due to industry chemical, consumer sewage, mining waste and infrastructure breakdown related to urbanisation and industrialisation adversely affect the pH, colour and murkiness, temperature, as well as nutrient, mineral and salt content of water sorely needed for agricultural use.

Whose problem is it anyway?

Poor water management in the North West Province Water this year afflicted 237 local authorities and was brought on by a high concentration of industries and factories with a correspondingly high concentrated water demand – which brings me back to the importance of a balanced approach.

In the Province, business was left to mop up a problem that rightfully belonged to a District Council (water management) and Municipality (distribution).

While industry, climate change and management inefficiencies vie for blame, the truth is alternative decentralised solutions need to be unearthed without delay. Because among the millions affected by the NWP crisis are subsistence farmers, already dealing with the pinch of more frequent droughts of the past two decades, which not only depletes their livestock but also exacerbates stock theft, veld fires and animal diseases.

Urban tolling crisis

Potchefstroom residents had to survive on 40 litres of water each earlier this year (2013), while metropolitan municipality Ekurhuleni’s 3 million residents receive 340 million kilolitres annually – yet the City will spend an additional R1.3 billion over the next decade just to halve its water waste!

Fair trade: a dietary or subsistence issue?

A decade-old Worldwide Fund for Nature (WWF) report identified sugar cane, rice, cotton and wheat as the world’s ‘thirstiest’ crops, accounting for 58% of the world’s irrigated farmland. Yet, half the world depends on rice as food and income source, cotton is a vital cash crop for African, Asian and Latin American SMEs, and sugar is too lucrative a cash cow for the EU and US to pass up.

Looking at South Africa, where 1.5% of the land mass under irrigation requires 63% of the country’s available freshwater to produce 30% of our crop yield, PR alone will not save these farmers – should a tug of war over water spill over into their fields.

Yet only 12% of our land is considered arable and only 3% abundant for crop farming, with 69% of South Africa’s surface area given over to grazing and livestock farming. Of course, the budding, better-off population demands more animal and fish proteins, fresh fruit and vegetables, exacerbating demand and supply complexities.

Light at the end of the causeway

While farmers grapple with higher input costs and expected yields on smaller tracts of arable land using less water and harmful chemicals, they are also challenged to rethink old farming methods and tools – ears close to the ground, so as not to miss news of a tested or proven novelty.

Globalisation has brought to our shores the definite advantages of technology and farming practice knowledge transfer to the benefit of local agricultural industries.

Water-wise agriculture

‘New’ farming models, such as terracing and reforestation to combat soil erosion and improve carbon sinking, improved weather forecasting and insurance, conservation and no-tillage farming, wetland restoration, co-operative small-scale farming practices, animal manure biogas fuel generation and repopulation of mono-culture grassland, are begging local attention by virtue of their proven commercial and environmental benefits.

Innovations in soil and water regeneration, seed and fertisliser, and irrigation technologies will be reviewed in depth in the next issue – to see where and how we may be missing the boat that’s certainly out there!

Source: Igor Shildermanov’s chapter “World fresh water resources” in Peter H. Gleck (editor) 1991, Water in Crisis: A Guide to the World’s fresh Water Resources. (Numbers are rounded)
Source: Igor Shildermanov’s chapter “World fresh water resources” in Peter H. Gleck (editor) 1991, Water in Crisis: A Guide to the World’s fresh Water Resources. (Numbers are rounded)